ha o - dy n / 93 07 00 3 v 1 1 1 Ju l 1 99 3 Relaxation and Localization in Interacting Quantum Maps

نویسندگان

  • A. Lakshminarayan
  • N. L. Balazs
چکیده

Quantum relaxation is studied in coupled quantum baker's maps. The classical systems are exactly solvable Kolmogorov systems (1) , for which the exponential decay to equilibrium is known. They model the fundamental processes of transport in classically chaotic phase space. The quantum systems, in the absence of global symmetry, show a marked saturation in the level of transport, as the suppression of diffusion in the quantum kicked rotor, and eigenfunction localization in the position basis. In the presence of a global symmetry we study another model that has classically an identical decay to equilibrium, but quantally shows resonant transport, no saturation and large fluctuations around equilibrium. We generalize the quantization to finite multibaker maps. As a byproduct we introduce some simple models of quantal tunneling between classically chaotic regions of phase space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ha o - dy n / 93 07 01 1 v 1 2 6 Ju l 1 99 3 Advection of vector fields by chaotic flows 1

" The high average vorticity that is known to exist in turbulent motion is caused by the extension of vortex filaments in an eddying fluid. "

متن کامل

ha o - dy n / 96 07 01 9 v 1 3 1 Ju l 1 99 6 Thermodynamic formalism and localization in Lorentz gases and hopping models

The thermodynamic formalism expresses chaotic properties of dy-namical systems in terms of the Ruelle pressure ψ(β). The inverse-temperature like variable β allows one to scan the structure of the probability distribution in the dynamic phase space. This formalism is applied here to a Lorentz Lattice Gas, where a particle moving on a lattice of size L d collides with fixed scatterers placed at ...

متن کامل

ha o - dy n / 97 06 01 3 v 2 3 1 Ju l 1 99 7 An Exact Renormalization Group analysis of 3 − d Well Developed turbulence ∗

We take advantage of peculiar properties of three dimensional incompressible turbulence to introduce a nonstandard Exact Renormalization Group method. A Galilean invariance preserving regularizing procedure is utilized and a field truncation is adopted to test the method. Results are encouraging: the energy spectrum E(k) in the inertial range scales with exponent −1.666±0.001 and the Kolmogorov...

متن کامل

ha o - dy n / 99 10 00 3 v 1 3 O ct 1 99 9 Chaotic Properties of Subshifts Generated by a Non - Periodic Recurrent Orbit July 1999 Xin -

The chaotic properties of some subshift maps are investigated. These subshifts are the orbit closures of certain non-periodic recurrent points of a shift map. We first provide a review of basic concepts for dynamics of continuous maps in metric spaces. These concepts include nonwandering point, recurrent point, eventually periodic point, scrambled set, sensitive dependence on initial conditions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994